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Geometry of the Einstein and Yang-Mills Equations 
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It is shown that the Einstein and Yang-Mills equations arise from the conditions 
for the space-time to be a submanifold of a pseudo-Euclidean space with dimension 
greater than 5. Some possible applications to cosmology, spin-2 fields, and 
geometrodynamics are discussed. 

1. I N T R O D U C T I O N  

Up to the present there is no experimental evidence or even a consistent 
theory which supports or excludes the idea that physical space-time is a 
submanifold of  a higher dimensional space, as opposed to the usual, stand- 
alone, Riemann structure. Nonetheless, the fact that the Einstein and Yang- 
Mills equations are implicit in the fundamental theorem of  submanifolds, 
stating that any d-dimensional manifold is isometrically and locally embedda- 
ble in a D-dimensional space 3~to, suggests that the theory of  submanifold 
space-times should be taken seriously. Applications of this result to high- 
energy physics have been frequently proposed (Friedman, 1961; Joseph, 1962; 
Fronsdal, 1965; Ne'emann and Rosen, 1965; Bergmann, 1982; Wetterich, 
1985; Maia, 1988). The purpose of this note is to examine the physical role 
of  the extrinsic curvature of  the space-time in the context of  that theorem. 

Two basic problems must be solved before the embedding of a space- 
time could be considered: One of  them concerns the choice of  the geometry 
of the ambient space. Possible candidates are flat spaces, Ricci flat spaces, 
and constant curvature spaces. Once this geometry is chosen, we get to the 
second problem, which concerns the dimension and uniqueness of its metric 
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signature. For example, the Schwarzschild space-time has two different flat 
embeddings with the same number of dimensions (six), but with different 
signatures. The choice of the wrong signature leads to closed timelike geode- 
sics (Fronsdal, 1959). 

Although there are some interesting aspects related to Ricci flat embed- 
ding spaces (Romero et al., 1995), to constant curvature embedding spaces 
(Holdom, 1983), and even to spaces with dynamically variable dimensions 
and signatures (Regge and Teitelbolm, 1975; Ellis et al., 1992), in the present 
note we study of the flat embedding case. This corresponds to the situation 
where the largest degree of freedom is obtained and where the signature 
ambiguity problem is fixed for true 1:1 embeddings with the least number 
of dimensions D. In this case we also have that the twisting vector 3 induces 
a connection in space-time (the twisting connection) which transforms like 
a gauge potential under a subgroup of the embedding symmetry (Maia and 
Monte, 1996). 

The isometric embedding of a space-time with metric gij is given by a 
parametrization ~ of the embedding space ./I/to, and by a set of vector fields 
dZA ~ such that 4 

gij : ~ i O~v, j'l~p.v, d ~ j v ,  i'qp.v = O, O~J~vB~Q~v = gAS = ~-A~AB 

(1) 

where r = - -  1, "q~ denote the Cartesian components of the metric of Jt~o, 
and gAS is the metric of the orthogonal subspace. Let (p; q) denote the 
signature of the embedding space Ato. Since the tangent space of the embedded 
space-time is Minkowski's space-time [with signature (3, 1)], it follows that 
the subspace orthogonal to the space-time has an isometry group SO(p  - 3, 
q - 1) which is a proper subgroup of the homogeneous embedding symmetry 
SO(p, q). The former is a semisimple group with Lie algebra generators LAB. 
Obviously, to this Lie algebra and to gAS we may associate a Clifford algebra 
with generators E A and identity E ~ = 1 such that 

E(AE B) = gABEO, ~[L AB = [E A, EB], Vt EA = O, Vi LAB = 0 

(2) 

where 3, is a proportionality factor arising from the isomorphism between 
the Lie algebra and the subalgebra of the Clifford algebra generated by the 
commutators. For convenience we introduce the Lie algebra-valued vector 
Ai = AiAB LAB and the Clifford algebra-valued tensor bij = bijA EA. 

3To avoid confusion with the Einstein-Cartan geometry, we use the designation of  "twisting 
vector" instead of  "torsion vector." 

4Lower case Latin indices run from 1 to 4 and capital Latin indices run from 5 to D. All Greek 
indices run from 1 to D. The indicated antisymmetrization applies only to the indices of  the 
same kind near the brackets. 
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With the above notation, two of the fundamental equations of submani- 
folds, Gauss' and Ricci's equations, assume similar structures, namely they 
describe the curvature tensors of the Levi-Civita and the twisting connections 
respectively as algebraic functions of the extrinsic curvature b o (Maia and 
Monte, 1996), 

Rijkt = b i [kb j] l -  bi[lbj] k (3) 

1 
F(j : -~ g mnbn[ibj] m (4) 

Denoting the covariant derivative associated with the twisting connection by 
D i = V i - A i ,  Codazzi's equations have a different look and meaning: 

Dtibk]i = 0 (5) 

In the next section we apply Frobenius' theorem to show the importance 
of this equation to the integrability of the two involved connections. Section 
3 adapts the fundamental theorem for submanifolds to space-times and finally, 
in Section 4 we discuss some possible implications of this result to spin-2 
fields and to geometrodynamics. 

2. INVOLUTIVE CONNECTIONS 

A distribution { ~/} on a manifold a~to, is said to be involutive if there 
are functions ~b/~ in Ato such that [~i, ~i] = ~b~ ~k. The local Frobenius theorem 
states that an involutive distribution {~/} is also integrable (Boothby, 1975) 
and that in particular, an involutive distribution of independent vector fields 
integrates as a submanifold of Ato (Sternberg, 1964; Jacobowitz, 1982). 

Now consider a connection F;, defined in al~ o by the respective covariant 
derivative ~/. We say that the connection F i is involutive if for a set of 
independent vector fields {Xk} we have 

[~i ,  ~ j ] X k  : dplijkXl (6)  

where again dptk are functions on d/to. In general I" i has a curvature defined 
by the the Lie product [~i,  ~bj], so that the Frobenius theorem for connections 
is a statement on the curvature of that connection in terms of the functions 
~b[yk. In what follows we apply this concept to the Levi-Civita and to the 
twisting connection of the space-time. 

The two basic conditions for the existence of a four-dimensional embed- 
ded space-time in Ato, the Gauss and Weingarten expressions, are respectively 
given by 

V jO-~,~ : -- gMNbijM~ ~ (7) 

Vk,ff~ = --gmnbkmA~ + g MUAkAM, Y~ (8) 
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Taking the covariant derivative of (7) and exchanging the indices and sub- 
tracting, we obtain 

[Vk, Vj]~ = - 2g MNV tkbjIiM.~ ~ "[- 2 g MNbi[jMV k]J~ ~ 

or, after using (8) and introducing the auxiliary notation 

D QMk : ~QMVk -- gPQAkp M ( 9 )  

we can write the above expression as 

[Vk, V j ] ~  = 2gMNDQMtA1~eN~, -- 2g'~gMNbitjMbk]mN03~ (10) 

As we see, Vi is not involutive, because the presence of the term in N~ in 
(10). Therefore, if we impose the condition 

Q 
D M[kbj]iQ ~--" 0 (1 1) 

the connection Vt becomes involutive in the sense that 

[Vk, Vj]~ = qb,~k~ (12) 

where we have denoted 

r = 2gmngMNbi[jMbk]mN 

Comparing (12) with the expression for the Riemann tensor [Vk, V j ] ~  = 
nm i ~ g Rijkm~ it follows that 

Rijkm~ = - 2 g MN gmnbitiMbk]mlVO'td ~ 

After replacing gMN = E(MEm and using the notation bij = biyA EA, we obtain 
Gauss' equation (3). 

To understand the meaning of (11), recall that the twisting vector is a 
Lie algebra-defined object with an associated covariant derivative given by 
Di = Vi - Ai. For an algebraic object X, we have 

DiX = V i X -  [Ai, X] 

where the algebraic term [Ai, X] is defined in the same algebra as that of 
the object X. In particular, applying this to bij = bijAE a, we obtain, after using 
[L MN, E A] = u ~AIUEM] and Dig "~ = 0, 

8 
Dkb U = VebijaE a - Akcnbiya "~ gA[BEC] 

Therefore, choosing ~ = 8 and using (9) and (2), we can write this as 

Dkbij = l~ckbijA Ec 
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Consequently, 

Dtkbilj = D~ a (13) 

Assuming (11), the right-hand side of this equation becomes zero and we 
obtain Codazzi's equation (5). Reciprocally, (5) implies in (11), which guaran- 
tees that Vi is involutive. 

Next, consider the twisting covadant derivative D i. Since ,/f~ = N ~ E  A 
belongs to the Clifford algebra, it follows that 

Oi ~p" = ~ i d ~ E  A --  A iMN.J~gA[NE M] = DAM.fi(~E M (14) 

Now, Weingarten's expression (8) with the notation (9) may also be written as 

DjAO~ ~ _.~ _gmnbjmAO'l..d~ n (15) 

Therefore (14) becomes 

O id~ ~ = - g mnbimM~ ~ E  M = _ gmnbimO-)= ! ~ (16) 

Taking the second covariant derivative of ,N'r we obtain, after exchanging 
i ~ j and subtracting, 

D i ( D j ~  p') - D j (Di  ~p ' )  :" [D i, Dj]d~ p" = 2gmnV[jO~ ~,nbi]m "[- 2 g  mn~ m 

and after using (7), it follows that 

[Di, Dj]d~ p" = 2gmngMNbm[iMbj]n~l~ --  2gmnD[jbi]mO-~n 

Again, assuming Codazzi's equation (5) [or equivalently (11)], the last term 
vanishes, so that 

[Dr, Dj]A r~ = 2gm"gMNbmtiubjj,,N ~, (17) 

In terms of components this expression is equivalent to 

([Di,  Dj],lq'~)E a = 2g mngMNbm[iAbj]nM~NE A 

so that, as in the case of Vi, the connection Di becomes involutive only after 
we apply (5): 

[Di, Dj]N~ = qbffaN ~ (18) 

where we have denoted 

+~a = 2g'n"gMNbm[iabjl,,M (19) 

Notice that we cannot cancel A TM in (18) to obtain an explicit expression for 
[D/, Dj]. This is more conveniently obtained directly from the commutator, 
whose components are (Maia, 1989) 

[Di, Dj]ABLaB = _ ( V i A j A  B _ 17jAiaB)L aB _ AiMNAjpQf A BMNPQLAB 
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where f~ffPQ = 2~[ANgM][P~ Q] are the structure constants of the Lie algebra 
of the semi-simple Lie group S O ( p  - 3, q - 1). Consequently, 

[Di, Dj]AB = --2(V[iAjIAB -- gMNA[iMAAj]NB ) 

Comparing the right-hand side of this expression with the left-hand side of 
Ricci's equation in its original form, we obtain Ricci's equation (4) in the 
compact form 

Fq [Di, Dj]ABL AB m n  AB = 1 = = 2g bm[iabj]nBL -~ g mnbm[ibj] n 

3. A F U N D A M E N T A L  T H E O R E M  FOR SPACE-TIMES 

The fact that the twisting vector Ai transforms as a gauge field suggests 
that it could be interpreted as Yang-Mills field of geometrical nature. To see 
that this is true, take the covariant divergence of F,y: 

1 
D iFo. = gikOk(gmnbm[ibj]n) = "~ g ikgmn([bmi , Okbjn ] - [bmj , Dkbin]) ( 2 0 )  

Defining 

1 
jgeora = 2 g~kgmn([bmi, Dkbjn] - [bmj, Dkbin]) (21) 

we can write equation (20) as a Yang-Mills equation for the current ige~ J j  , 

D"F U = i geom (22) 
~J 

On the other hand, since [D t, [DJ, Dk]] = D~F jk, Jacobi's identity for the 
Lie bracket 

[Di, [Dj, Dk] ] "1- [Dk, [Di, Dj]] "1- [Dj, [Dk, Di] ] = 0 

leads to the homogeneous Yang-Mills equations 

D i F  jk + DkF ij + DJF ki = 0 (23) 

The covariant derivative of (22) gives 

DJDiFij  = D J j ~  e~ = 0 

so that jffeom can be interpreted as a conserved current. Therefore, the torsion 
vector of a space-time is a Yang-Mills field of geometrical nature with gauge 
group S O ( p  - 1, q - 3), with the current given by (21). Notice that the 
connection Ai cannot be eliminated in the expression of j j, even taking into 
account Codazzi's equation. Consequently, the solutions of equation (22) and 
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(23) in general depend on an integration over some compact surface S, with 
an eventual association of j~eom with a charge of topological nature given 
by q = J'sj~ e~ d3x.  

As an example, consider Schwarzschild's space-time with the two known 
six-dimensional embeddings given by Fronsdal (1965) and by Kasner (1965) 
discussed in Maia and Monte (1996). The Kasner embedding correspond to 
an S O ( l ,  1) gauge group, but this leads to noncausal situations (Fronsdal, 
1965). On the other hand, taking the Fronsdal embedding, the gauge group 
of the twisting connection is SO(2), so that A; would be an electromagnetic 
field of geometrical nature. Taking the horizon of a Schwarzschild wormhole 
as the integrating surface, we would obtain an associated geometric charge. 

To deal with Gauss' equations, it is convenient to introduce the mean 
curvature h and the scalar extrinsic curvature k of the space-time by 

h a = ganhaha,  h a = giJbija, k 2 = gaBbmiab~i = bmiAb miA (24) 

It follows directly from the contractions of Gauss' equation (3) that 

so that 

Rjk = gilRijkt = 2gMNgmnhj[mMbn]kN and R = h z - k z (25) 

l = geom (26) G o = R O - -~ Rgo  t o 

where we have denoted 

1 
_qt ge~ = bimAb7 A - hA bA - -  ~ (k 2 - h2)gi j  (27) 

Since by hypothesis our embedded manifold is a solution of Einstein's 
t m~~ equations (26) are equivalent to equations for a given source w , 

t/gj e~ = 8'rrGt/~ atter (28) 

Using the previous results, we may now announce the following theorem: 

T h e o r e m .  Given a space-time of general relativity with metric go corres- 
t mawr then it has a unique flat local embedding in a ponding to a source .,j , 

pseudo-Euclidean space &o,  with the least number of dimensions. The extrin- 
sic curvature satisfies (5) and is related to the source by (28). Furthermore, 
if D > 5, the space-time is endowed with a geometrical Yang-Mills field 
A i ,  with gauge group S O ( p  - 3, q - 1), satisfying Ricci's equation (4). 

In fact, assuming a true 1:1 embedding in the smallest possible space, 
then the signature of the embedding space is unique. If D > 5, and the 
twisting vector transforms as a Yang-Mills field with group S O ( p  - 3, 
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q - 1), according to (22) and (23), this vector satisfies the Yang-Mills 
equations with a current jgeom given by (21). On the other hand, the metric 
go" is the gravitational field characterized by the Einstein equations (26) with 
the source related to b o by (28). 

Reciprocally, if we are given a tensor gij, an S O ( p  - 3, q - l)-Lie 
algebra-valued vector Ai ,  and a Clifford algebra-valued tensor b U such that 

ai j  = -tjt matter  and D iFij = j~na t t e r  (29) 

then with the solutions of these equations we may write the respective curva- 
ture t e n s o r s  Rijkl and Fo.. Replacing these curvatures in equations (3), (5), and 
(4), we obtain the system of equations to determine b0: 

Dtjbkli = O, btikbtj] - b[jkbn] = Rokt, g mnb,,tibjl,,, = 2Fq 

Therefore, we obtain a complete set of quantities go, A~an, and bijA satisfying 
the integrability conditions for the embedding of the space-time in Ato. 

4. DISCUSSION 

The results of last sections bring two new and independent entities b/j 
and Aj  into general relativity besides the metric. The extrinsic curvature b 0 
is related to the source of gravitation by the algebraic (nondifferentiable) 
equations (28). If the extrinsic geometry is not fixed, we can always adjust 
it so as to satisfy (28). On the other hand, (28) says that for a given codimension 
and signature, the behavior of the extrinsic curvature may impose severe 
limitations to the matter content of the space-time. A simple example of this 
is given by a Friedman-Robertson-Walker universe with dust matter, 
t matter  "" ,j = - p u i u j ,  with g'Juiuj = - 1 ,  embedded in a five-dimensional fiat 
space with signature (4, 1). In this case we have Ai = 0 and it follows from 
(28) that 

1 
gmnbimbjn - hbij - ~ ( k  2 - h 2)gij = - 87rGpuiuj  

so that k z - h z = -8"trGp. This is satisfied with the extrinsic curvature 
given by 

bii = ~ gi) 

If p is constant, we obtain a constant curvature space as a consequence of 
(3). However, if p varies with time, the extrinsic curvature would be significant 
at times when the density was very high. In this case, the associated scalars 
h and k could play a role in inflation. 
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A general expression of bij in a five-dimensional embedding has been 
given by Szekeres (1966), 

bij = hgij + (4h - h)uiuj 

where k is a constant. Using (28), we see that this extrinsic curvature restricts 
the type of matter allowed in the space-time. 

With rare exceptions (Maia and Monte, 1996; Holdom, 1983), the use 
of the twisting vector Ai as a geometrical gauge field has not been considered 
in the literature. This is possibly due to the fact that the original equations 
for this field are not explicit. The resulting expressions (4) and (22) place 
the gauge field properties of the twisting vector in evidence. For example, 
by taking a six-dimensional embedding of the Schwarzschild space-time, we 
may end up with an electromagnetic field, as already mentioned. Another 
interesting situation occurs if we break the 10-dimensional barrier for analytic 
embeddings, considering the 14-dimensional case. In this case we would end 
up with a Yang-Mills field corresponding to a SO(10) gauge group. 

It is known that the Einstein and Yang-Mills equations act as integrability 
conditions for some linear systems (Dubois-Violette, 1983). Here we have 
shown that they also play a role as integrability conditions for space-times 
submanifolds. However, as we have seen, they are not sufficient, as the 
Codazzi equation (5) also plays an essential role in the application of the 
Frobenius theorem and it cannot be dispensed with. Only after (5) is imposed 
are equations (22) and (23) formally identical to the Yang-Mills equations 
relative to the gauge group S O ( p  - 1, q - 3), whose source is derived from 
the extrinsic geometry of space-time. Equation (5) looks more like a constraint 
on bij than a dynamical equation. Since this is a symmetric rank-two tensor, 
we could use Gupta's theorem (Gupta, 1954; Deser, 1970) to derive a possible 
dynamical equation for bij as a spin-2 field. Denoting by Biy the Ricci tensor 
of bij and B = b ~iBij, such equation would be given by an Einstein-like equation 

1 
Bij - ~ Bb U = 0 

It is also possible to interpret the extrinsic curvature tensor b,j as just 
an intermediate field between the matter sources and the gravitational and 
gauge fields, suggesting that this field could eventually be eliminated between 
the equations (22) and (26) in a higher dimensional model. Consider a situation 
where physics is not necessarily confined to the four-dimensional hypersur- 
face of Mo. For example, in a high-energy process, such as particle collisions, 
some particles which would be otherwise constrained to the space-time hyper- 
surface would be able to escape to move along the embedding space. This 
process could be associated with an alternative way to explain the nonobserv- 
ability of the extra dimensions (Rubakov and haposhnikov, 1983; Visser, 
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1985). This may be formulated by an embedded manifold described by 
the coordinates 

~Ct(xi, X A) = O'~Ct(xi) -~ x A ~  (30) 

From these coordinates we obtain the vielbein ~ on which the metric of 
Mo resembles that of Kaluza-Klein theory 

t~ v (gij -}- gMNAiMAjN AiM I 
~laf~ = ~,a~,f~Tl~v = Aj  N gaB/ (31) 

where we have denoted 

gij = g mn(gim -- XabimA)(gjn -- xBbjnB), AiM = xAAiMA (32) 

The Einstein-Hilbert Lagrangian calculated with (31) gives (after using an 
analogy with the Kaluza-Klein metric ansatz) 

1 
~(~/),,/~ = R(g),,/~ + ] tr FiJFo �9 (33) 

Since our space ~ o  is flat, taking variation with respect to gij we obtain the 
Einstein-Yang-Mills equations for the field g,7, 

1 
gij  -- "2 ggi j  -m- tij(F) (34) 

where in the right-hand side we have the energy-momentum tensor of the Ai 
field and all contractions are made with respect to g,~. Therefore the four- 
dimensional manifold described by (30) with metric gij is a space-time solution 
of the Einstein-Yang-Mills equations (34). This looks somewhat akin to 
geometrodynamics (Wheeler, 1957) where the geometric electromagnetic 
potential is given by the twisting connection Ai and the Yang-Mills-Wheeler 
geons would be four-dimensional compact solutions of (34). On the other 
hand, we also see strong analogies with Kaluza-Klein theory, where (31) 
would replace the Kaluza-Klein metric ansatz and the four-dimensional space- 
time is described by (30). 
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